

# Shale Production Uncertainty Cases: A Scenario Examination

**Preliminary Results** 

2013 IEPR July 17, 2013

Leon D. Brathwaite

Electricity Supply Analysis Division
leon.brathwaite@energy.ca.gov//916-654-4771



# **Shale Production Uncertainty Scenario Cases Background**

- NG production from shale formations has soared in the last ten years:
  - Production in May 2013 exceeded 31 bcf/d
  - Accounts for over 40% of Lower 48 production
- Accelerated technological innovation has transformed the NG industry



# Shale Production Uncertainty Scenario Cases Background

#### Controversial Issues:

- Groundwater contamination
- Increased seismic activity
- Diversion of freshwater
- Added methane emissions

# Decision-makers re-examining policies

- Delayed development (e.g., New York)
- Instituted environmental mitigation fees
- Tightening regulation



# **Shale Production Uncertainty Cases -16**

|                                                                                  | Start with the Re   | ference Case                                                                     |                     |
|----------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------|---------------------|
| 4                                                                                |                     | ۷                                                                                |                     |
| Created a sustained High Technology Environment                                  |                     | Created a sustained Low Technology Environment                                   |                     |
| V Two levels of Production Capacity Availability (PCA)                           |                     | V Two levels of Production Capacity Availability (PCA)                           |                     |
| PCA = Constrained                                                                | PCA = Unconstrained | PCA = Constrained                                                                | PCA = Unconstrained |
| V                                                                                |                     | V                                                                                |                     |
| Four levels of Environmental Mitigation Cost (EMC) per Mcf: Shales/Conventionals |                     | Four levels of Environmental Mitigation Cost (EMC) per Mcf: Shales/Conventionals |                     |
| EMC = \$0.00/\$0.00                                                              | EMC = \$0.30/\$0.30 | EMC = \$0.00/\$0.00                                                              | EMC = \$0.30/\$0.30 |
| EMC = \$0.55/\$0.30                                                              | EMC = \$0.67/\$0.30 | EMC = \$0.55/\$0.30                                                              | EMC = \$0.67/\$0.30 |



# Shale Production Uncertainty Scenario Cases <u>Disaggregation of Cases</u>

- Impact of technology
  - High Technology cases vs Low Technology cases
- Impact of policies on development and/or production
  - Unconstrained cases <u>vs</u> Constrained cases
  - Changes in the size of the resource base
  - Changes in the availability of productive capacity
- Impact of environmental mitigation fees
  - Group I cases <u>vs</u> Group II cases <u>vs</u> Group IV cases
    - Group I: (Shale \$0.00, Conventional \$0.00)
    - Group II: (Shale \$0.30, Conventional \$0.30)
    - Group III: (Shale \$0.55, Conventional \$0.30)
    - Group IV: (Shale \$0.67, Conventional \$0.30)



# **Shale Production Uncertainty Scenario Cases**<u>Relation to Four Previous Cases</u>

#### Shale Abundance

➤ High Technology, EMC = \$0.30/\$0.30, unconstrained

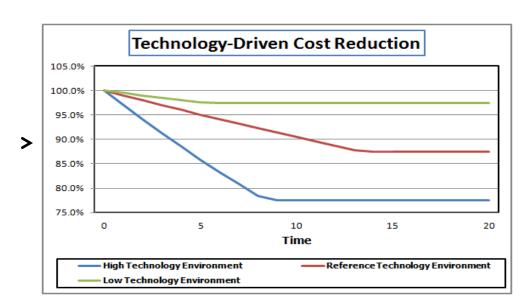
#### Shale Reconsidered

➤ Low Technology, EMC = \$0.55/\$0.30, constrained

# Shale Expensive

➤ Low Technology, EMC = \$0.67/\$0.30, constrained

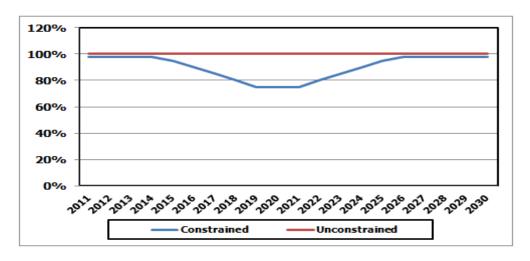
#### Shale Deferred


➤ High Technology, EMC = \$0.55/\$0.30, constrained



# Shale Production Uncertainty Scenario Cases Key Change Variables

- Changes in four key variables relative to the reference case
  - Changes in the supply cost curves
    - Resource size ranges from 15% increase to 15% decrease
  - Changes in the rate of growth of technological innovation


As the learning rate increases, cost reductions reach the learning limit at a faster rate.





# **Shale Production Uncertainty Scenario Cases Key Variable Changes** (cont'd)

Changes in the time of availability of some resources



- Changes in environmental mitigation cost
  - Ranged from \$0.0 to \$0.67 per Mcf



# 

#### **Sustained High Technology Environment**:

**Learning Rate: 3%** 

**Cost Reduction Limit: 77.5%** 

**Underestimation of Shale Resources: 15%** 

#### **Sustained Low Technology Environment**:

**Learning Rate: 0.5%** 

**Cost Reduction Limit: 97.5%** 

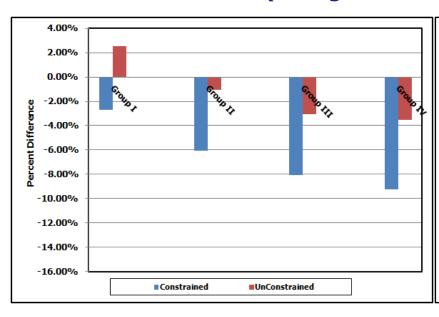
**Overestimation of Shale Resources: 15%** 

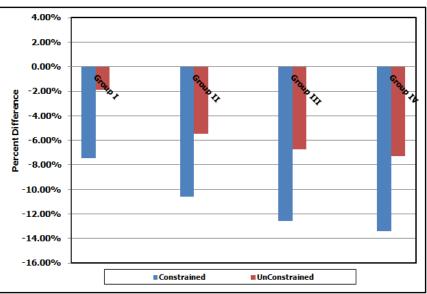


# **Shale Production Uncertainty Scenario Cases**

# Performance of Cases: 2020 Results




# **Shale Production Uncertainty Scenario Cases:**<a href="Understanding the Results">Understanding the Results</a>


- Three effects in following schematics:
  - Effect of Technology
    - Compare side by side schematics
  - Effect of Environmental Mitigation Cost
    - Discern trend by moving left to right within each schematic
  - Effect of production constraint
    - Compare blue bars to red bars (sitting next to each other)
    - All schematics show changes relative to Reference Case (0.00%)



### **L48 Total Production**

(Change relative to Reference Case)

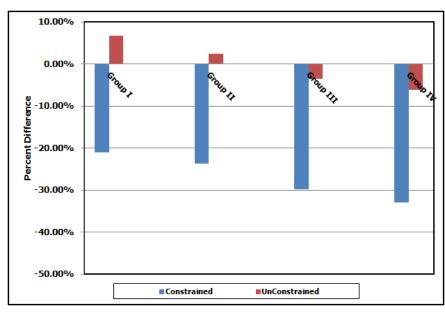


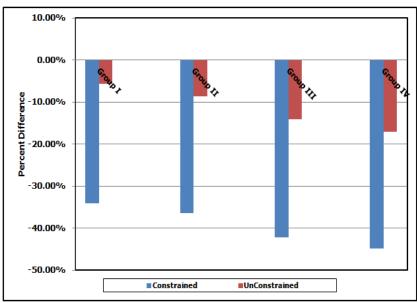


**Sustained High Technology: L48 Total Production** 

**Sustained Low Technology: L48 Total Production** 

Sustained Low Technology environment impacts NG supply more than a Sustained High Technology environment


#### **EMC**


Group I: (Shale - \$0.00, Conventional - \$0.00); Group II: (Shale - \$0.30, Conventional - \$0.30); Group III: (Shale - \$0.55, Conventional - \$0.30); Group IV: (Shale - \$0.67, Conventional - \$0.30)



# **L48 Shale Production**

(Change relative to Reference Case)

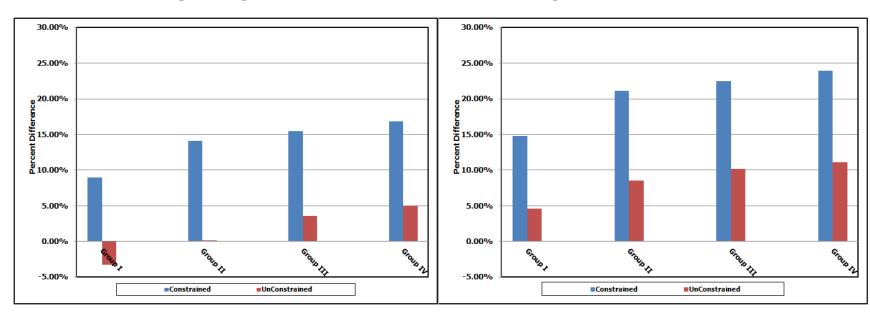




**Sustained High Technology: L48 Shale Production** 

**Sustained Low Technology: L48 Shale Production** 

Increasing Environmental Mitigation Cost can result in larger reductions in shale production


**EMC** 

Group I: (Shale - \$0.00, Conventional - \$0.00); Group II: (Shale - \$0.30, Conventional - \$0.30); Group III: (Shale - \$0.55, Conventional - \$0.30); Group IV: (Shale - \$0.67, Conventional - \$0.30)



# **Henry Hub Prices**

(Change relative to Reference Case)



**Sustained High Technology: Henry Hub Prices** 

**Sustained Low Technology: Henry Hub Prices** 

Constraints on production can result in larger price impacts

#### **EMC**

Group I: (Shale - \$0.00, Conventional - \$0.00); Group II: (Shale - \$0.30, Conventional - \$0.30); Group III: (Shale - \$0.55, Conventional - \$0.30); Group IV: (Shale - \$0.67, Conventional - \$0.30)



# **Shale Production Uncertainty Scenario Cases: Conclusions and Insights**

- Constraining NG from shale formations significantly impacts prices and supply
- Proliferation of technological innovation reduces impacts:
  - Cost reduction
  - Water handling
- Environmental policies alter development and production outcomes
- Environmental impact fees alter the structure of the natural gas supply portfolio



# **Shale Production Uncertainty Scenario Cases**

# **Questions & Comments**